Формулы хартли и шеннона. Информационная энтропия

Данная формула также как и формула Хартли, в информатике применяется для высчитывания общего количество информации при различных вероятностях.

В качестве примера различных не равных вероятностей можно привести выход людей из казармы в военной части. Из казармы могут выйти как и солдат, так и офицер, и даже генерал. Но распределение cолдатов, офицеров и генералов в казарме разное, что очевидно, ведь солдатов будет больше всего, затем по количеству идут офицеры и самый редкий вид будут генералы. Так как вероятности не равны для всех трех видов военных, для того чтобы подсчитать сколько информации займет такое событие и используется формула Шеннона .

Для других же равновероятных событий, таких как подброс монеты (вероятность того что выпадет орёл или решка будет одинаковой — 50 %) используется формула Хартли.

Теперь, давайте рассмотрим применение этой формулы на конкретном примере:

В каком сообщений содержится меньше всего информации (Считайте в битах):

  1. Василий сьел 6 конфет, из них 2 было барбариски.
  2. В комьютере 10 папок, нужный файл нашелся в 9 папке.
  3. Баба Люда сделала 4 пирога с мясом и 4 пирога с капустой. Григорий сьел 2 пирога.
  4. В Африке 200 дней сухая погода, а 165 дней льют муссоны. африканец охотился 40 дней в году.

В этой задаче обратим внимания что 1,2 и 3 варианты, эти варианты считать легко, так как события равновероятны. И для этого мы будем использовать формулу Хартли I = log 2 N (рис.1) А вот с 4 пунком где видно, что распределение дней не равномерно(перевес в сторону сухой погоды), что же тогда нам в этом случае делать? Для таких событий и используется формула Шеннона или информационной энтропии: I = - (p 1 log 2 p 1 + p 2 log 2 p 2 + . . . + p N log 2 p N), (рис.3)

ФОРМУЛА КОЛИЧЕСТВА ИНФОРМАЦИ (ФОРМУЛА ХАРТЛИ, РИС.1)

В которой:

  • I — количество информации
  • p — вероятность того что это события случиться

Интересующие нас события в нашей задаче это

  1. Было две барбариски из шести (2/6)
  2. Была одна папка в которой нашлась нужный файл по отношению к общему количеству (1/10)
  3. Всего пирогов было восемь из которых сьедено григорием два (2/8)
  4. и последнее сорок дней охоты по отношению к двести засушливым дням и сорок дней охоты к сто шестидесяти пяти дождливым дням. (40/200) + (40/165)

таким образом получаем что:

ФОРМУЛА ВЕРОЯТНОСТИ ДЛЯ СОБЫТИЯ.

Где K — это интересующие нас событие, а N общее количество этих событий, также чтобы проверить себя вероятность того или иного события не может быть больше единицы. (потому что вероятных событий всегда меньше)

ФОРМУЛА ШЕННОНА ДЛЯ ПОДСЧЕТА ИНФОРМАЦИИ (РИС.3)

Вернемся к нашей задаче и посчитаем сколько информации содержится.

Кстате, при подсчёте логарифма удобно использовать сайт — https://planetcalc.ru/419/#

  • Для первого случая — 2/6 = 0,33 = и далее Log 2 0,33 = 1.599 бит
  • Для второго случая — 1/10 = 0,10 Log 2 0,10 = 3.322 бит
  • Для третьего — 2/8 = 0,25 = Log 2 0,25 = 2 бит
  • Для четвертого — 40/200 + 40/165 = 0.2 и 0,24 соотвественно, далее считаем по формуле -(0,2 * log 2 0,2) +-(o.24 * log 2 0.24) = 0.95856 бит

Таким образом ответ для нашей задачи получился 4.

Американский инженер Р. Хартли в 1928 г. процесс получения информации рассматривал как выбор одного сообщения из конечного наперёд заданного множества из N равновероятных сообщений, а количество информации I, содержащееся в выбранном сообщении, определял как двоичный логарифм N.

Формула Хартли: I = log 2 N или N = 2 i

Допустим, нужно угадать одно число из набора чисел от единицы до ста. По формуле Хартли можно вычислить, какое количество информации для этого требуется: I = log 2 100 > 6,644. Таким образом, сообщение о верно угаданном числе содержит количество информации, приблизительно равное 6,644 единицы информации.

Приведем другие примеры равновероятных сообщений :

1. при бросании монеты: «выпала решка», «выпал орел»;

2. на странице книги: «количество букв чётное», «количество букв нечётное».

Определим теперь, являются ли равновероятными сообщения «первой выйдет из дверей здания женщина» и«первым выйдет из дверей здания мужчина ». Однозначно ответить на этот вопрос нельзя. Все зависит от того, о каком именно здании идет речь. Если это, например, станция метро, то вероятность выйти из дверей первым одинакова для мужчины и женщины, а если это военная казарма, то для мужчины эта вероятность значительно выше, чем для женщины.

Для задач такого рода американский учёный Клод Шеннон предложил в 1948 г. другую формулу определения количества информации, учитывающую возможную неодинаковую вероятность сообщений в наборе .

Формула Шеннона: I = - (p 1 log 2 p 1 + p 2 log 2 p 2 + . . . + p N log 2 p N),

где p i - вероятность того, что именно i-е сообщение выделено в наборе из N сообщений.

Легко заметить, что если вероятности p 1 , ..., p N равны, то каждая из них равна 1 / N, и формула Шеннона превращается в формулу Хартли.

Помимо двух рассмотренных подходов к определению количества информации, существуют и другие. Важно помнить, что любые теоретические результаты применимы лишь к определённому кругу случаев, очерченному первоначальными допущениями .

В качестве единицы информации Клод Шеннон предложил принять один бит (англ. bit - binary digit - двоичная цифра).

Бит в теории информации - количество информации, необходимое для различения двух равновероятных сообщений (типа «орел»-«решка», «чет»-«нечет» и т.п.).

В вычислительной технике битом называют наименьшую «порцию» памяти компьютера, необходимую для хранения одного из двух знаков «0» и «1», используемых для внутримашинного представления данных и команд.

Бит - слишком мелкая единица измерения. На практике чаще применяется более крупная единица - байт , равная восьми битам. Именно восемь битов требуется для того, чтобы закодировать любой из 256 символов алфавита клавиатуры компьютера (256=2 8).



Широко используются также ещё более крупные производные единицы информации:

1 Килобайт (Кбайт) = 1024 байт = 210 байт,

1 Мегабайт (Мбайт) = 1024 Кбайт = 220 байт,

1 Гигабайт (Гбайт) = 1024 Мбайт = 230 байт.

В последнее время в связи с увеличением объёмов обрабатываемой информации входят в употребление такие производные единицы, как:

1 Терабайт (Тбайт) = 1024 Гбайт = 240 байт,

1 Петабайт (Пбайт) = 1024 Тбайт = 250 байт.

За единицу информации можно было бы выбрать количество информации, необходимое для различения, например, десяти равновероятных сообщений. Это будет не двоичная (бит), а десятичная (дит ) единица информации.

Количество информации, заключенное в сообщении, определяется объемом знаний, который несет это сообщение получающему его человеку. Сообщение содержит информацию для человека, если заключенные в нем сведения являются для этого человека новыми и понятными, и, следовательно, пополняют его знания.

Информацию, которую получает человек, можно считать мерой уменьшения неопределенности знаний. Если некоторое сообщение приводит к уменьшению неопределенности наших знаний, то можно говорить, что такое сообщение содержит информацию.

За единицу количества информации принято такое количество информации, которое мы получаем при уменьшении неопределенности в 2 раза. Такая единица названа бит .

В компьютере информация представлена в двоичном коде или на машинном языке, алфавит которого состоит из двух цифр (0 и 1). Эти цифры можно рассматривать как два равновероятных состояния. При записи одного двоичного разряда реализуется выбор одного из двух возможных состояний (одной из двух цифр) и, следовательно, один двоичный разряд несет количество информации в 1 бит. Два двоичных разряда несут информацию 2 бита, три разряда – 3 бита и т.д.



Поставим теперь обратную задачу и определим: «Какое количество различных двоичных чисел N можно записать с помощью I двоичных разрядов?» С помощью одного двоичного разряда можно записать 2 различных числа (N=2=2 1), с помощью двух двоичных разрядов можно записать четыре двоичных числа (N=4=2 2), с помощью трех двоичных разрядов можно записать восемь двоичных чисел (N=8=2 3) и т.д.

В общем случае количество различных двоичных чисел можно определить по формуле

N – количество возможных событий (равновероятных)!!!;

В математике существует функция, с помощью которой решается показательное уравнение, эта функция называется логарифмом. Решение такого уравнения имеет вид:

Если события равновероятны , то количество информации определяется по данной формуле.

Количество информации для событий с различными вероятностями определяется по формуле Шеннона :

,

где I – количество информации;

N – количество возможных событий;

P i – вероятность отдельных событий.

Пример 3.4

В барабане для розыгрыша лотереи находится 32 шара. Сколько информации содержит сообщение о первом выпавшем номере (например, выпал номер 15)?

Решение:

Поскольку вытаскивание любого из 32 шаров равновероятно, то количество информации об одном выпавшем номере находится из уравнения: 2 I =32.

Но 32=2 5 . Следовательно, I=5 бит. Очевидно, ответ не зависит от того, какой именно выпал номер.

Пример 3.5

Какое количество вопросов достаточно задать вашему собеседнику, чтобы наверняка определить месяц, в котором он родился?

Решение:

Будем рассматривать 12 месяцев как 12 возможных событий. Если спрашивать о конкретном месяце рождения, то, возможно, придется задать 11 вопросов (если на 11 первых вопросов был получен отрицательный ответ, то 12-й задавать не обязательно, так как он и будет правильным).

Правильнее задавать «двоичные» вопросы, то есть вопросы, на которые можно ответить только «да» или «нет». Например, «Вы родились во второй половине года?». Каждый такой вопрос разбивает множество вариантов на два подмножества: одно соответствует ответу «да», а другое – ответу «нет».

Правильная стратегия состоит в том, что вопросы нужно задавать так, чтобы количество возможных вариантов каждый раз уменьшалось вдвое. Тогда количество возможных событий в каждом из полученных подмножеств будет одинаково и их отгадывание равновероятно. В этом случае на каждом шаге ответ («да» или «нет») будет нести максимальное количество информации (1 бит).

По формуле 2 и с помощью калькулятора получаем:

бита.

Количество полученных бит информации соответствует количеству заданных вопросов, однако количество вопросов не может быть нецелым числом. Округляем до большего целого числа и получаем ответ: при правильной стратегии необходимо задать не более 4 вопросов.

Пример 3.6

После экзамена по информатике, который сдавали ваши друзья, объявляются оценки («2», «3», «4» или «5»). Какое количество информации будет нести сообщение об оценке учащегося А, который выучил лишь половину билетов, и сообщение об оценке учащегося В, который выучил все билеты.

Решение:

Опыт показывает, что для учащегося А все четыре оценки (события) равновероятны и тогда количество информации, которое несет сообщение об оценке, можно вычислить по формуле (1):

На основании опыта можно также предположить, что для учащегося В наиболее вероятной оценкой является «5» (p 1 =1/2), вероятность оценки «4» в два раза меньше (p 2 =1/4), а вероятности оценок «2» и «3» еще в два раза меньше (p 3 =p 4 =1/8). Так как события неравновероятны, воспользуемся для подсчета количества информации в сообщении формулой 2:

Вычисления показали, что при равновероятных событиях мы получаем большее количество информации, чем при неравновероятных событиях.

Пример 3.7

В непрозрачном мешочке хранятся 10 белых, 20 красных, 30 синих и 40 зеленых шариков. Какое количество информации будет содержать зрительное сообщение о цвете вынутого шарика.

Решение:

Так как количество шариков разного цвета неодинаково, то вероятности зрительных сообщений о цвете вынутого из мешочка шарика также различаются и равны количеству шариков данного цвета деленному на общее количество шариков:

P б =0,1; P к =0,2; P с =0,3; P з =0,4.

События неравновероятны, поэтому для определения количества информации, содержащегося в сообщении о цвете шарика, воспользуемся формулой 2:

Для вычисления этого выражения, содержащего логарифмы можно воспользоваться калькулятором. I»1,85 бита.

Пример 3.8

Используя формулу Шеннона, достаточно просто определить, какое количество бит информации или двоичных разрядов необходимо, чтобы закодировать 256 различных символов. 256 различных символов можно рассматривать как 256 различных равновероятных состояний (событий). В соответствии с вероятностным подходом к измерению количества информации необходимое количество информации для двоичного кодирования 256 символов равно:

I=log 2 256=8 бит=1 байт

Следовательно, для двоичного кодирования 1 символа необходим 1 байт информации или 8 двоичных разрядов.

Какое количество информации содержится, к примеру, в тексте романа «Война и мир», во фресках Рафаэля или в генетическом коде человека? Ответа на эти вопросы наука не даёт и, по всей вероятности, даст не скоро. А возможно ли объективно измерить количество информации? Важнейшим результатом теории информации является следующий вывод:«В определенных, весьма широких условиях можно пренебречь качественными особенностями информации, выразить её количество числом, а также сравнить количество информации, содержащейся в различных группах данных».

В настоящее время получили распространение подходы к определению понятия «количество информации», основанные на том, что информацию, содержащуюся в сообщении, можно нестрого трактовать в смысле её новизны или, иначе, уменьшения неопределённости наших знаний об объекте. Эти подходы используют математические понятия вероятности и логарифма.

Наиболее широкое распространение при определении среднего количества информации, которое содержится в сообщениях от источников самой разной природы, получил подход. К Шеннона. Рассмотрим следующую ситуацию.
Источник передает элементарные сигналы k различных типов. Проследим за достаточно длинным отрезком сообщения. Пусть в нем имеется N 1 сигналов первого типа, N 2 сигналов второго типа, ..., N k сигналов k -го типа, причем N 1 + N 2 + ... + N k = N – общее число сигналов в наблюдаемом отрезке, f 1, f 2, ..., f k – частоты соответствующих сигналов. При возрастании длины отрезка сообщения каждая из частот стремится к фиксированному пределу, т.е.
lim f i = p i , (i = 1, 2, ..., k ),
где р i можно считать вероятностью сигнала. Предположим, получен сигнал i -го типа с вероятностью р i , содержащий – log p i единиц информации. В рассматриваемом отрезке i -й сигнал встретится примерно Np i раз (будем считать, что N достаточно велико), и общая информация, доставленная сигналами этого типа, будет равна произведению Np i log р i . То же относится к сигналам любого другого типа, поэтому полное количество информации, доставленное отрезком из N сигналов, будет примерно равно

Чтобы определить среднее количество информации, приходящееся на один сигнал, т.е. удельную информативность источника, нужно это число разделить на N . При неограниченном росте приблизительное равенство перейдет в точное. В результате будет получено асимптотическое соотношение – формула Шеннона

В последнее время она стала не менее распространенной, чем знаменитая формула Эйнштейна Е = mc 2 . Оказалось, что формула, предложенная Хартли, представляет собой частный случай более общей формулы Шеннона. Если в формуле Шеннона принять, что
р 1 = p 2 = ... = р i = ... =p N = 1/N , то

Знак минус в формуле Шеннона не означает, что количество информации в сообщении – отрицательная величина. Объясняется это тем, что вероятность р , согласно определению, меньше единицы, но больше нуля. Так как логарифм числа, меньшего единицы, т.е. log p i – величина отрицательная, то произведение вероятности на логарифм числа будет положительным.
Кроме этой формулы, Шенноном была предложена абстрактная схема связи, состоящая из пяти элементов (источника информации, передатчика, линии связи, приемника и адресата), и сформулированы теоремы о пропускной способности, помехоустойчивости, кодировании и т.д.
В результате развития теории информации и ее приложений идеи Шеннона быстро распространяли свое влияние на самые различные области знаний. Было замечено, что формула Шеннона очень похожа на используемую в физике формулу энтропии, выведенную Больцманом. Энтропия обозначает степень неупорядоченности статистических форм движения молекул. Энтропия максимальна при равновероятном распределении параметров движения молекул (направлении, скорости и пространственном положении). Значение энтропии уменьшается, если движение молекул упорядочить. По мере увеличения упорядоченности движения энтропия стремится к нулю (например, когда возможно только одно значение и направление скорости). При составлении какого-либо сообщения (текста) с помощью энтропии можно характеризовать степень неупорядоченности движения (чередования) символов. Текст с максимальной энтропией – это текст с равновероятным распределением всех букв алфавита, т.е. с бессмысленным чередованием букв, например: ЙХЗЦЗЦЩУЩУШК ШГЕНЕЭФЖЫЫДВЛВЛОАРАПАЯЕЯЮЧБ СБСЬМ. Если при составлении текста учтена реальная вероятность букв, то в получаемых таким образом «фразах» будет наблюдаться определенная упорядоченность движения букв, регламентируемая частотой их появления: ЕЫТ ЦИЯЬА ОКРВ ОДНТ ЬЧЕ МЛОЦК ЗЬЯ ЕНВ ТША.
При учете вероятностей четырехбуквенных сочетаний текст становится настолько упорядоченным, что по некоторым формальным признакам приближается к осмысленному: ВЕСЕЛ ВРАТЬСЯ НЕ СУХОМ И НЕПО И КОРКО. Причиной такой упорядоченности в данном случае является информация о статистических закономерностях текстов. В осмысленных текстах упорядоченность, естественно, еще выше. Так, в фразе ПРИШЛ... ВЕСНА мы имеем еще больше информации о движении (чередовании) букв. Таким образом, от текста к тексту увеличиваются упорядоченность и информация, которой мы располагаем о тексте, а энтропия (мера неупорядоченности) уменьшается.
Используя различие формул количества информации Шеннона и энтропии Больцмана (разные знаки), Л. Бриллюэн охарактеризовал информацию как отрицательную энтропию, или негэнтропию . Так как энтропия является мерой неупорядоченности, то информация может быть определена как мера упорядоченности материальных систем .
В связи с тем, что внешний вид формул совпадает, можно предположить, что понятие информация ничего не добавляет к понятию энтропии. Однако это не так. Если понятие энтропии применялось ранее только для систем, стремящихся к термодинамическому равновесию, т.е. к максимальному беспорядку в движении ее составляющих, к увеличению энтропии, то понятие информации обратило внимание и на те системы, которые не увеличивают энтропию, а наоборот, находясь в состоянии с небольшими значениями энтропии, стремятся к ее дальнейшему уменьшению.

Трудно переоценить значение идей теории информации в развитии самых разнообразных научных областей.
Однако, по мнению К. Шеннона, все нерешенные проблемы не могут быть решены при помощи таких магических слов, как «информация», «энтропия», «избыточность».
Теория информации основана на вероятностных, статистических закономерностях явлений. Она дает полезный, но не универсальный аппарат. Поэтому множество ситуаций не укладываются в информационную модель Шеннона. Не всегда представляется возможным заранее установить перечень всех состояний системы и вычислить их вероятности. Кроме того, в теории информации рассматривается только формальная сторона сообщения, в то время как смысл его остается в стороне. Например, система радиолокационных станций ведет наблюдение за воздушным пространством с целью обнаружения самолета противника Система S , за которой ведется наблюдение, может быть в одном из двух состояний x 1 – противник есть, x 2 – противника нет. Важность первого сообщения нельзя оценить с помощью вероятностного подхода. Этот подход и основанная на нем мера количества информации выражают, прежде всего, «структурно-синтаксическую» сторону ее передачи, т.е. выражают отношения сигналов. Однако понятия «вероятность», «неопределенность», с которыми связано понятие информации, предполагают процесс выбора. Этот процесс может быть осуществлен только при наличии множества возможностей. Без этого условия, как можно предположить, передача информации невозможна.

Своё дальнейшее развитие теория информации получила в работах Клода Шеннона, американского инженера и математика (1916 – 2001). Шеннон является одним из создателей математической теории информации. Его основные труды посвящены теории релейно-контактных схем, математической теории связи, кибернетике. К. Шеннон изучал вопросы передачи информации в телеграфии, телефонии или радиовещании в виде сигналов электромагнитных колебаний. Одна из задач, которую ставил перед собой К. Шеннон, заключалась в том, чтобы определить систему кодирования, позволяющую оптимизировать скорость и достоверность передачи информации. Так как в годы войны он служил в шифровальном отделе, где занимался разработкой криптографических систем, то это позже помогло ему открыть методы кодирования с коррекцией ошибок. В своих работах 1948-1949 годов К. Шеннон определил количество информации через энтропию - величину, известную в термодинамике и статистической физике как мера разупорядоченности системы, а за единицу количества информации принял то, что впоследствии назвали битом (bit).

Для дальнейшего изложения необходимо использовать некоторые понятия теории вероятности: случайное событие, опыт, вероятность события, случайная величина. В окружающем нас мире происходят различные события, причём мы можем интуитивно, основываясь на опыте, оценивать одни из них как более возможные, чем другие. Случайным называют событие, которое может наступить или не наступить в результате некоторого испытания, опыта или эксперимента. Будем обозначать события заглавными буквами A, B,Cи т.д. Количественная мера возможности наступления некоторого событияAназывается его вероятностью и обозначается какp(A),p– от английского probability. Чем более возможно наступление случайного события, тем больше его вероятность: еслиAболее возможно чемB, то p(A) > p(B). Вводится понятие достоверного события – событие, которое обязательно наступит. Это событие обозначаюти полагают, что его вероятностьp() = 1. Невозможным называют событие, которое никогда не произойдёт. Его обозначаюти полагают, что его вероятностьp() = 0. Для вероятностей всех остальных событий A выполняется неравенствоp() < p(A)

Для событий вводится понятие суммы и произведения. Сумма событий A+B – это событие, которое состоит в наступлении события A или В. Произведение событий A*B состоит в одновременном наступлении события A и B. События AиBнесовместны , если они не могут наступить вместе в результате одного испытания. Вероятность суммы несовместных событий равна сумме их вероятностей. Если А и В несовместные события, то p(A+B) = p(A) + p(B).

События A1, A2, A3, …Anобразуютполную группу , если в результате опыта обязательно наступит хотя бы одно из них. Если события A1, A2, A3, …Anпопарно несовместны и образуют полную группу, то сумма их вероятностей p1+p2+p3+ ….pn=1. Если они при этом ещё и равновероятны, то вероятность каждого равнаp= 1/n, гдеn– число событий.Вероятность события определяется как отношение числа благоприятных событию исходов опыта к общему числу исходов.Частота события – эмпирическое приближение его вероятности. Она вычисляется в результате проведения серии опытов как отношение числа опытов, в которых событие наступило к общему числу опытов. При большом числе опытов (испытаний) частота события стремится к его вероятности.

К. Шеннон, используя подход Р. Хартли, обратил внимание на то, что при передаче словесных сообщений частота (вероятность) использования различных букв алфавита не одинакова: некоторые буквы используются очень часто, другие - редко.

Рассмотрим алфавит A m состоящий изmсимволов. Обозначим черезp i вероятность (частоту) появления i-ого символа в любой позиции передаваемого сообщения, состоящего из n символов. Один i – ый символ алфавита несёт количество информации равное -Log 2 (p i). Перед логарифмом стоит «минус» потому, что количество информации величина неотрицательная, а Log 2 (x) <0 при 0

На месте каждого символа в сообщении может стоять любой символ алфавита A m ; количество информации, приходящееся на один символ сообщения, равно среднему значению информации по всем символам алфавита A m:

Общее количество информации, содержащееся в сообщении из n символов равно:

(3.2)

Если все символы алфавита A m появляются с равной вероятностью, то все p i = p. Так какр i = 1, то p = 1/m.

Формула (3.2) в случае, когда все символы алфавита равновероятны, принимает вид

Вывод: формула Шеннона (3.2) в случае, когда все символы алфавита равновероятны, переходит в формулу Хартли (2.2).

В общем случае количество энтропии Hпроизвольной системы X (случайной величины), которая может находиться в m различных состояниях x 1 ,x 2 , …x m cвероятностями p 1 ,p 2 , …p m , вычисленное по формуле Шеннона, равно

(3.3)

Напомним, что p 1 +p 2 + … +p m = 1. Если все p i одинаковы, то все состояния системы X равновероятны; в этом случае p i = 1/m, и формула (3.3) переходит в формулу Хартли (2.5):H(X) =Log 2 (m).

Замечание. Количество энтропии системы (случайной величины) Х не зависит от того, в каких конкретно состояниях x 1 ,x 2 , …x m может находиться система, но зависит от числаmэтих состояний и от вероятностей p 1 ,p 2 , …p m , с которыми система может находиться в этих состояниях. Это означает, что две системы, у которых число состояний одинаково, а вероятности этих состояний p 1 ,p 2 , …p m равны (с точностью до порядка перечисления), имеют равные энтропии.

Теорема. Максимум энтропии H(X) достигается в том случае, когда все состояния системы равновероятны. Это означает, что

(3.4)

Если система X может находиться только в одном состоянии (m=1), то её энтропия равна нулю. Рассмотрим систему, которая может принимать только два состояния x1 и x2 с вероятностями p1 иp2:

Количество энтропии такой системы равно

H(X) = - (1/2*Log 2 (1/2)+ 1/2*Log 2 (1/2)) = -Log 2 (1/2) = Log 2 (2) = 1

Это количество принимается за единицу измерения энтропии (информации) и называется 1 бит (1 bit).

Рассмотрим функцию

h(x) = -(x*log 2 (x) + (1-x)*log 2 (1-x)). (3.5)

Область её определения – интервал (0 ;1), Limh(x) = 0 приx0 или 1. График этой функции представлен на рисунке:

Рис. 4. График функции (3.5)

Если обозначить x через p 1 , а (1-x) через p 2 , тоp 1 +p 2 =1;p 1 ,p 2 (0;1), h(x) = H(p 1 ,p 2) = - (p 1 *log 2 (p 1) + (p 2)*log 2 (p 2)) – энтропия системы с двумя состояниями; максимум H достигается приp 1 =p 2 = 0.5.

График h(x) можно использовать при решении следующих задач:

Задача 1. Заданы три случайных величины X, Y, Z, каждая из которых принимает по два значения с вероятностями:

    P(X=x1) = 0.5; P(X=x2) = 0.5;

    P(Y=y1) = 0.2;P(Y=y2) = 0.8;

    P(Z=z1) = 0.3; P(Z=z2) = 0.7 .

Запись P(X=x1) = 0.5 означает, что случайная величина X принимает значение x1 с вероятностью 0.5. Требуется расположить энтропии этих систем в порядке возрастания.

Решение. Энтропия H(X) равна 1 и будет наибольшей; энтропия H(Y) равна значению функции h(x), см. (3.5), приx= 0.2, т.е.H(Y)=h(0.2); энтропияH(Z) =h(0.3). По графику h(x) можно определить, что h(0.2) < h(0.3). Следовательно, H(Y) < H(Z) < H(X).

Замечание 1. Энтропия системы тем больше, чем менее отличаются вероятности её состояний друг от друга. На основании этого можно сделать вывод, что H(Y) < H(Z). Например, если для систем X и Y с тремя состояниями заданы вероятности: дляX{0.4; 0.3; 0.3}, дляY{0.1; 0.1; 0.8}, то очевидно, что неопределённость системыXбольше, чем неопределённость системыY: у последней, скорее всего, будет реализовано состояние, вероятность которого равна 0.8 .

Энтропия H(X) характеризует степень неопределённости системы. Чем больше объём полученных о системе сведений, тем больше будет информации о системе, и тем менее неопределённым будет её состояние для получателя информации.

Если энтропия системы после получения информации становится равной нулю, это означает, что неопределённость исчезла, вся энтропия «перешла» в информацию. В этом случае говорят, что была получена полная информацию о системе X.Количество информации, приобретаемое при полном выяснении состояния физической системы, равно энтропии этой системы.

Если после получения некоторого сообщения неопределённость системы Xстала меньше, но не исчезла совсем, то количество информации, содержащееся в сообщении, равно приращению энтропии:

I = H1(X) - H2(X), (3.6)

где H1(X) и H2(X) - энтропия системы до и после сообщения, соответственно. Если H2(X) = 0, то мера неопределённости системы равна нулю и была получена полная информация о системе.

Пример. Вы хотите угадать количество очков, которое выпадет на игральном кубике. Вы получили сообщение, что выпало чётное число очков. Какое количество информации содержит это сообщение?

Решение. Энтропия системы «игральный кубик» H1 равна Log 2 6, т.к. кубик может случайным образом принять шестьравновозможных состояний {1, 2, 3, 4, 5, 6}. Полученное сообщение уменьшает число возможных состояний до трёх: {2, 4, 6}, т.е. энтропия системы теперь равна H2= Log 2 3. Приращение энтропии равно количеству полученной информации I = H1 – H2 = Log 2 6 - Log 2 3 = Log 2 2 = 1bit.

На примере разобранной задачи можно пояснить одно из распространённых определений единицы измерения – 1 бит: 1 бит - количество информации, которое уменьшает неопределённость состояния системы в два раза. Неопределённость дискретной системы зависит от числа её состоянийN. Энтропия до получения информацииH1= Log 2 N. Если после получения информации неопределённость уменьшилась в два раза, то это означает, что число состояний стало равнымN/2, а энтропияH2 =Log 2 N/2. Количество полученной информацииI= H1 -H2 =Log 2 N-Log 2 N/2 =Log 2 2 = 1 бит.

Рассмотрим несколько задач на применение формулы Шеннона и Хартли.

Задача 2. Может ли энтропия системы, которая принимает случайным образом одно из 4-х состояний, равняться: а) 3; б) 2.1 в) 1.9 г) 1; д) 0.3? Ответ объяснить.

Решение. Максимально возможное значение энтропия системы с 4-мя состояниями достигает в случае, когда все состояния равновероятны. Это значение по формуле Хартли равноLog 2 4 = 2 бита. Во всех других случаях энтропия системы с 4-мя состояниями будет меньше 2. Следовательно, возможными значениями энтропии из перечисленных выше, могут быть значения 1.9, 1, 0.3.

Задача 3. Задана функцияH(x)= -x*Log 2 (x) - (1-x)*Log 2 (1-x). Расположите в порядке возрастания следующие значения:H(0.9),H(0.85),H(0.45),H(0.2),H(0.15).

Решение. Используем график функции (3.5). Наибольшим значением будет H(0.45), наименьшим значением – H(0.9), затем по возрастанию идут значенияH(0.15) иH(0.85) = H(0.15); H(0.2). Ответ:H(0.9)

Задача 4. По линии связи переданы сообщения:a) «начало_в_10»;b) «лоанча_1_в0». Сравните количество информации в первом и втором сообщении.

Решение. Первое и второе сообщение состоят из одних и тех же символов: второе получено из первого в результате перестановки этих символов. В соответствии с формулой Шеннона эти сообщения содержат одинаковое количество информации. При этом первое сообщение несёт содержательную информацию, а второе – простой набор символов. Однако, в этом случае можно сказать, что второе сообщение является «зашифрованным» вариантом первого, и поэтому количество информации в обоих сообщениях одинаковое.

Задача 5. Получены три различных сообщенияA,B,C:

A= «прибытие в десять часов»;B= «прибытие в десять часов ноль минут»;C= «прибытие ровно в десять часов». Используя энтропийный подход Шеннона, сравните количество информации, содержащееся в этих сообщениях.

Решение. Обозначим количество информации в сообщениях A, B, C черезI(A),I(B),I(C) соответственно. В смысле «содержания» эти сообщения совершенно одинаковы, но одинаковое содержание выражено с помощью разного количества символов. При этом все символы сообщения А содержатся в сообщении B и С, сообщение С = A + «ровно», В = A + «ноль минут»; в соответствии с подходом Шеннона получаем: I(A) < I(C) < I(B).

Понятие Энтропи́и впервые введено в 1865 Р. Клаузиусом в термодинамике для определения меры необратимого рассеяния энергии. Энтропия применяется в разных отраслях науки, в том числе и в теории информации как мера неопределенности какого-либо опыта, испытания, который может иметь разные исходы. Эти определения энтропии имеют глубокую внутреннюю связь. Так на основе представлений об информации можно вывести все важнейшие положения статистической физики. [БЭС. Физика. М: Большая российская энциклопедия, 1998].

Информационная двоичная энтропия для независимых (неравновероятных) случайных событий x с n возможными состояниями (от 1 до n , p - функция вероятности) рассчитывается по формуле Шеннона :

Эта величина также называется средней энтропией сообщения. Энтропия в формуле Шеннона является средней характеристикой – математическим ожиданием распределения случайной величины .
Например, в последовательности букв, составляющих какое-либо предложение на русском языке, разные буквы появляются с разной частотой, поэтому неопределённость появления для некоторых букв меньше, чем для других.
В 1948 году, исследуя проблему рациональной передачи информации через зашумлённый коммуникационный канал, Клод Шеннон предложил революционный вероятностный подход к пониманию коммуникаций и создал первую, истинно математическую, теорию энтропии. Его сенсационные идеи быстро послужили основой разработки теории информации, которая использует понятие вероятности. Понятие энтропии, как меры случайности, введено Шенноном в его статье «A Mathematical Theory of Communication», опубликованной в двух частях в Bell System Technical Journal в 1948 году.

В случае равновероятных событий (частный случай), когда все варианты равновероятны, остается зависимость только от количества рассматриваемых вариантов и формула Шеннона значительно упрощается и совпадает с формулой Хартли, которая впервые была предложена американским инженером Ральфом Хартли в 1928 году, как один из научных подходов к оценке сообщений:

, где I – количество передаваемой информации, p – вероятность события, N – возможное количество различных (равновероятных) сообщений.

Задание 1. На равновероятные события.
В колоде 36 карт. Какое количество информации содержится в сообщении, что из колоды взята карта с портретом “туз”; “туз пик”?

Вероятность p1 = 4/36 = 1/9, а p2 = 1/36. Используя формулу Хартли имеем:

Ответ: 3.17; 5.17 бит
Заметим (из второго результата), что для кодирования всех карт, необходимо 6 бит.
Из результатов также ясно, что чем меньше вероятность события, тем больше информации оно содержит. (Данное свойство называется монотонностью )

Задание 2. На неравновероятные события
В колоде 36 карт. Из них 12 карт с “портретами”. Поочередно из колоды достается и показывается одна из карт для определения изображен ли на ней портрет. Карта возвращается в колоду. Определить количество информации, передаваемой каждый раз, при показе одной карты.

gastroguru © 2017