Более сложные логические элементы. Основные логические операции (and, or, xor, not) Логическое xor

В этой статье мы поговорим о некоторых битовых операциях. Рассмотрим основные из них: XOR (исключающее ИЛИ), AND (И), NOT (НЕ) а также OR (ИЛИ).

Как известно, минимальной единицей измерения информации является бит , который хранит одно из 2-х значений: 0 (False , ложь) либо 1 (True , истина). Таким образом, битовая ячейка может одновременно находиться лишь в одном из двух возможных состояний.

Для манипуляций с битами используют определённые операции - логические или булевые . Они могут применяться к любому биту, вне зависимости от того, какое у него значение - ноль или единица. Что же, давайте посмотрим на примеры использования трёх основных логических операций.

Логическая операция AND (и)

AND обозначается знаком & .

Оператор AND выполняется с 2-мя битами, возьмём, к примеру, a и b. Результат выполнения операции AND равен 1, если a и b равняются 1. В остальных случаях результат равен 0. Например, с помощью AND вы можете узнать, чётное число или нет.

Посмотрите на таблицу истинности операции AND:

Логическая операция OR (ИЛИ)

Обозначается знаком | .

Оператор OR также выполняется с 2-мя битами (a и b). Результат равен 0, если a и b равны 0, иначе он равен 1. Смотрим таблицу истинности.

Логическая операция XOR (исключающее ИЛИ)

Оператор XOR обозначается ^ .

XOR выполняется с 2-мя битами (a и b). Результат выполнения операции XOR (исключающее ИЛИ ) равен 1, когда один из битов b или a равен 1. В остальных ситуациях результат применения оператора XOR равен 0.

Таблица истинности логической операции для XOR (исключающее ИЛИ) выглядит так:

Используя XOR (исключающее ИЛИ), вы можете поменять значения 2-х переменных одинакового типа данных, не используя временную переменную. А ещё, посредством XOR можно зашифровать текст, например:

String msg = "This is a message"; char message = msg.toCharArray(); String key = ".*)"; String encryptedString = new String(); for(int i = 0; i< message.length; i++){ encryptedString += message[i]^key.toCharArray(); }

Согласен, XOR - далеко не самый надёжный метод шифрования, но это не значит, что его нельзя сделать частью какого-либо шифровального алгоритма.

Логическая операция NOT (НЕ)

Это побитовое отрицание, поэтому выполняется с одним битом и обозначается ~ .

Результат зависит от состояния бита. Если он в нулевом состоянии, то итог операции - единица и наоборот. Всё предельно просто.

Эти 4 логические операции следует запомнить в первую очередь, т. к. с их помощью можно получить практически любой возможный результат. Также существуют такие операции, как << (побитовый сдвиг влево) и >> (побитовый сдвиг вправо).

Команда XOR в Ассемблере выполняет операцию исключающего ИЛИ между всеми битами двух операндов. Результат операции XOR записывается в первый операнд. Синтаксис:

XOR ПРИЁМНИК, ИСТОЧНИК

Инструкция XOR всегда сбрасывает CF и OF, а также (в зависимости от результата) изменяет флаги SF, ZF и PF. Значение флага AF может быть любым - оно не зависит от результата операции.

ПРИЁМНИК может быть одним из следующих:

  • Область памяти (MEM)

ИСТОЧНИК может быть одним из следующих:

  • Область памяти (MEM)
  • Регистр общего назначения (REG)
  • Непосредственное значение - константа (IMM)

С учётом ограничений, которые были описаны выше, комбинации ПРИЁМНИК-ИСТОЧНИК могут быть следующими:

REG, MEM MEM, REG REG, REG MEM, IMM REG, IMM

Операция исключающего ИЛИ

При выполнении операции исключающего ИЛИ значение результата будет равно 1, если сравниваемые биты отличаются (не равны). Если же сравниваемые биты имеют одинаковое значение, то результат будет равен 0.

Потому эта операция и называется исключающей. Она исключает из сравнения одинаковые биты, а с неодинаковыми выполняет операцию .

Но, так как любая пара неодинаковых битов это 0 и 1, то операция логического ИЛИ в результате даст 1.

Таблица истинности исключающего ИЛИ

Таблица истинности XOR приведена ниже:

0 XOR 0 = 0 0 XOR 1 = 1 1 XOR 0 = 1 1 XOR 1 = 0

Особенности операции XOR

Операция XOR обладает свойством реверсивности. Если её выполнить дважды с одним и тем же операндом, то значение результата инвертируется. То есть если два раза выполнить эту операцию между битами X и Y , то в конечном результате мы получим исходное значение бита Х .

0 XOR 0 = 0 XOR 0 = 0 0 XOR 1 = 1 XOR 1 = 0 1 XOR 0 = 1 XOR 0 = 1 1 XOR 1 = 0 XOR 1 = 1

Это свойство можно использовать, например, для простейшего шифрования данных (об этом как-нибудь в другой раз).

Проверка флага чётности после операции XOR

Команда XOR работает с 8-, 16- и 32-разрядными операциями.

Иногда есть необходимость после выполнения операции проверить флаг чётности PF, для того, чтобы узнать, какое количество единичных битов (чётное или нечётное) содержится в младшем байте результата (это бывает необходимо не только в случае выполнения операции XOR, но и при выполнении других арифметических и логических операций).

Если флаг чётности установлен, то в результате получилось чётное количество единичных битов. Иначе флаг будет сброшен.

Можно также просто проверить на чётность любое число, не меняя значения результата. Для этого надо выполнить команду XOR с нулевым значением. То есть в ПРИЁМНИКЕ должно быть проверяемое число, а в ИСТОЧНИКЕ должен быть ноль. А затем надо проверить флаг чётности. Пример:

AL, 10110101b ;Поместить в AL число с нечётным;количеством единичных битов (5) XOR AL, 0 ;При этом флаг чётности PF не;устанавливается (PO) MOV AL, 10110111b ;Поместить в AL число с чётным;количеством единичных битов (6) XOR AL, 0 ;При этом флаг чётности PF ;будет установлен (PE)

В отладчиках обычно для обозначения чётного количества единиц в полученном результате используется сокращение PE (Parity Even), а для нечётного - PO (Parity Odd).

Чётность в 16-разрядных словах

Как уже было сказано, флаг чётности устанавливается в зависимости от количества единиц, содержащихся в младшем байте результата. Чтобы проверить чётность 16-разрядного операнда, надо выполнить команду XOR между старшим и младшим байтом этого числа:

MOV AX, 64C1h ;0110 0100 1100 0001 - 6 единичных битов XOR AH, AL ;Флаг чётности будет установлен

Таким нехитрым способом 16-разрядный операнд разбивается на два байта (2 группы по 8 битов), и при выполнении команды XOR единичные биты, находящиеся в соответствующих разрядах двух 8-разрядных операндов, не будут учитываться. Потому что соответствующий бит результата равен нулю.

Команда XOR удаляет из результата любые пересекающиеся единичные биты двух 8-разрядных операндов и добавляет в результат непересекающиеся единичные биты. То есть чётность полученного нами 8-разрядного числа будет такой же, как и чётность исходного 16-разрядного числа.

0110 0100 1100 0001 - исходное 16-разрядное число 0 XOR 1 = 1 1 XOR 1 = 0 1 XOR 0 = 1 0 XOR 0 = 0 0 XOR 0 = 0 1 XOR 0 = 1 0 XOR 0 = 0 0 XOR 1 = 1

В результате 4 единицы, то есть флаг PF будет установлен

Чётность в 32-разрядных двойных словах

Ну а если надо определить чётность в 32-разрядном числе?

Тогда число разбивается на четыре байта, и поочерёдно с этими байтами выполняется операция исключающего ИЛИ.

Например, мы разбили 32-разрядное число B на четыре байта B0 , B1 , B2 , B3 , где В0 - это младший байт.

Тогда для определения чётности числа В нам надо будет использовать следующую формулу:

B0 XOR B1 XOR B2 XOR B3

Но в ассемблере такая запись недопустима. Поэтому придётся немного подумать.

Ну и напоследок о происхождении мнемоники XOR . В английском языке есть слово eX ception - исключение. Сокращением от этого слова является буква Х (так повелось). Вы наверняка встречали такое в рекламе или в названии продуктов, производители которых претендуют (ну или думают, что претендуют) на исключительность. Например, Лада XRAY, Sony XPeria и т.п. Так что XOR - это аббревиатура, собранная из двух слов - eX ception OR - исключающее ИЛИ.

Абсолютно все цифровые микросхемы состоят из одних и тех же логических элементов – «кирпичиков» любого цифрового узла. Вот о них мы и поговорим сейчас.

Логический элемент – это такая схемка, у которой несколько входов и один выход. Каждому состоянию сигналов на входах, соответствует определенный сигнал на выходе.

Итак, какие бывают элементы?

Элемент «И» (AND)

Иначе его называют «конъюнктор».

Для того, чтобы понять как он работает, нужно нарисовать таблицу, в которой будут перечислены состояния на выходе при любой комбинации входных сигналов. Такая таблица называется «таблица истинности ». Таблицы истинности широко применяются в цифровой технике для описания работы логических схем.

Вот так выглядит элемент «И» и его таблица истинности:

Поскольку вам придется общаться как с русской, так и с буржуйской тех. документацией, я буду приводить условные графические обозначения (УГО) элементов и по нашим и по не нашим стандартам.

Смотрим таблицу истинности, и проясняем в мозгу принцип. Понять его не сложно: единица на выходе элемента «И» возникает только тогда, когда на оба входа поданы единицы. Это объясняет название элемента: единицы должны быть И на одном, И на другом входе.

Если посмотреть чуток иначе, то можно сказать так: на выходе элемента «И» будет ноль в том случае, если хотя бы на один из его входов подан ноль. Запоминаем. Идем дальше.

Элемент «ИЛИ» (OR)

По другому, его зовут «дизъюнктор».

Любуемся:

Опять же, название говорит само за себя.

На выходе возникает единица, когда на один ИЛИ на другой ИЛИ на оба сразу входа подана единица. Этот элемент можно назвать также элементом «И» для негативной логики: ноль на его выходе бывает только в том случае, если и на один и на второй вход поданы нули.

Элемент «НЕ» (NOT)

Чаще, его называют «инвертор».

Надо чего-нибудь говорить по поводу его работы?

Элемент «И-НЕ» (NAND)

Элемент И-НЕ работает точно так же как «И», только выходной сигнал полностью противоположен. Там где у элемента «И» на выходе должен быть «0», у элемента «И-НЕ» - единица. И наоборот. Э то легко понять по эквивалентной схеме элемента:

Элемент «ИЛИ-НЕ» (NOR)

Та же история – элемент «ИЛИ» с инвертором на выходе.

Следующий товарищ устроен несколько хитрее:
Элемент «Исключающее ИЛИ» (XOR)

Он вот такой:

Операция, которую он выполняет, часто называют «сложение по модулю 2». На самом деле, на этих элементах строятся цифровые сумматоры.

Смотрим таблицу истинности. Когда на выходе единицы? Правильно: когда на входах разные сигналы. На одном – 1, на другом – 0. Вот такой он хитрый.

Эквивалентная схема примерно такая:

Ее запоминать не обязательно.

Собственно, это и есть основные логические элементы. На их основе строятся абсолютно любые цифровые микросхемы. Даже ваш любимый Пентиум 4.

Ну и напоследок – несколько микросхем, внутри которых содержатся цифровые элементы. Около выводов элементов обозначены номера соответствующих ног микросхемы. Все микросхемы, перечисленные здесь, имеют 14 ног. Питание подается на ножки 7 (-) и 14 (+). Напряжение питания – смотри в таблице в предыдущем параграфе.

Электрическая схема, предназначенная для выполнения какой-либо логической операции с входными данными, называется логическим элементом. Входные данные представляются здесь в виде напряжений различных уровней, и результат логической операции на выходе - также получается в виде напряжения определенного уровня.

Операнды в данном случае подаются - на вход логического элемента поступают сигналы в форме напряжения высокого или низкого уровня, которые и служат по сути входными данными. Так, напряжение высокого уровня - это логическая единица 1 - обозначает истинное значение операнда, а напряжение низкого уровня 0 - значение ложное. 1 - ИСТИНА, 0 - ЛОЖЬ.

Логический элемент - элемент, осуществляющий определенные логические зависимость между входными и выходными сигналами. Логические элементы обычно используются для построения логических схем вычислительных машин, дискретных схем автоматического контроля и управления. Для всех видов логических элементов, независимо от их физической природы, характерны дискретные значения входных и выходных сигналов.

Логические элементы имеют один или несколько входов и один или два (обычно инверсных друг другу) выхода. Значения «нулей» и «единиц» выходных сигналов логических элементов определяются логической функцией, которую выполняет элемент, и значениями «нулей» и «единиц» входных сигналов, играющих роль независимых переменных. Существуют элементарные логические функции, из которых можно составить любую сложную логическую функцию.

В зависимости от устройства схемы элемента, от ее электрических параметров, логические уровни (высокие и низкие уровни напряжения) входа и выхода имеют одинаковые значения для высокого и низкого (истинного и ложного) состояний.

Традиционно логические элементы выпускаются в виде специальных радиодеталей - интегральных микросхем. Логические операции, такие как конъюнкция, дизъюнкция, отрицание и сложение по модулю (И, ИЛИ, НЕ, исключающее ИЛИ) - являются основными операциями, выполняемыми на логических элементах основных типов. Далее рассмотрим каждый из этих типов логических элементов более внимательно.

Логический элемент «И» - конъюнкция, логическое умножение, AND


«И» - логический элемент, выполняющий над входными данными операцию конъюнкции или логического умножения. Данный элемент может иметь от 2 до 8 (наиболее распространены в производстве элементы «И» с 2, 3, 4 и 8 входами) входов и один выход.

Условные обозначения логических элементов «И» с разным количеством входов приведены на рисунке. В тексте логический элемент «И» с тем или иным числом входов обозначается как «2И», «4И» и т. д. - элемент «И» с двумя входами, с четырьмя входами и т. д.


Таблица истинности для элемента 2И показывает, что на выходе элемента будет логическая единица лишь в том случае, если логические единицы будут одновременно на первом входе И на втором входе. В остальных трех возможных случаях на выходе будет ноль.

На западных схемах значок элемента «И» имеет прямую черту на входе и закругление на выходе. На отечественных схемах - прямоугольник с символом «&».

Логический элемент «ИЛИ» - дизъюнкция, логическое сложение, OR


«ИЛИ» - логический элемент, выполняющий над входными данными операцию дизъюнкции или логического сложения. Он так же как и элемент «И» выпускается с двумя, тремя, четырьмя и т. д. входами и с одним выходом. Условные обозначения логических элементов «ИЛИ» с различным количеством входов показаны на рисунке. Обозначаются данные элементы так: 2ИЛИ, 3ИЛИ, 4ИЛИ и т. д.


Таблица истинности для элемента «2ИЛИ» показывает, что для появления на выходе логической единицы, достаточно чтобы логическая единица была на первом входе ИЛИ на втором входе. Если логические единицы будут сразу на двух входах, на выходе также будет единица.

На западных схемах значок элемента «ИЛИ» имеет закругление на входе и закругление с заострением на выходе. На отечественных схемах - прямоугольник с символом «1».

Логический элемент «НЕ» - отрицание, инвертор, NOT

«НЕ» - логический элемент, выполняющий над входными данными операцию логического отрицания. Данный элемент, имеющий один выход и только один вход, называют еще инвертором, поскольку он на самом деле инвертирует (обращает) входной сигнал. На рисунке приведено условное обозначение логического элемента «НЕ».

Таблица истинности для инвертора показывает, что высокий потенциал на входе даёт низкий потенциал на выходе и наоборот.

На западных схемах значок элемента «НЕ» имеет форму треугольника с кружочком на выходе. На отечественных схемах - прямоугольник с символом «1», с кружком на выходе.

Логический элемент «И-НЕ» - конъюнкция (логическое умножение) с отрицанием, NAND

«И-НЕ» - логический элемент, выполняющий над входными данными операцию логического сложения, и затем операцию логического отрицания, результат подается на выход. Другими словами, это в принципе элемент «И», дополненный элементом «НЕ». На рисунке приведено условное обозначение логического элемента «2И-НЕ».


Таблица истинности для элемента «И-НЕ» противоположна таблице для элемента «И». Вместо трех нулей и единицы - три единицы и ноль. Элемент «И-НЕ» называют еще «элемент Шеффера» в честь математика Генри Мориса Шеффера, впервые отметившего значимость этой в 1913 году. Обозначается как «И», только с кружочком на выходе.

Логический элемент «ИЛИ-НЕ» - дизъюнкция (логическое сложение) с отрицанием, NOR

«ИЛИ-НЕ» - логический элемент, выполняющий над входными данными операцию логического сложения, и затем операцию логического отрицания, результат подается на выход. Иначе говоря, это элемент «ИЛИ», дополненный элементом «НЕ» - инвертором. На рисунке приведено условное обозначение логического элемента «2ИЛИ-НЕ».


Таблица истинности для элемента «ИЛИ-НЕ» противоположна таблице для элемента «ИЛИ». Высокий потенциал на выходе получается лишь в одном случае - на оба входа подаются одновременно низкие потенциалы. Обозначается как «ИЛИ», только с кружочком на выходе, обозначающим инверсию.

Логический элемент «исключающее ИЛИ» - сложение по модулю 2, XOR

«исключающее ИЛИ» - логический элемент, выполняющий над входными данными операцию логического сложения по модулю 2, имеет два входа и один выход. Часто данные элементы применяют в схемах контроля. На рисунке приведено условное обозначение данного элемента.

Изображение в западных схемах - как у «ИЛИ» с дополнительной изогнутой полоской на стороне входа, в отечественной - как «ИЛИ», только вместо «1» будет написано «=1».


Этот логический элемент еще называют «неравнозначность». Высокий уровень напряжения будет на выходе лишь тогда, когда сигналы на входе не равны (на одном единица, на другом ноль или на одном ноль, а на другом единица) если даже на входе будут одновременно две единицы, на выходе будет ноль - в этом отличие от «ИЛИ». Данные элементы логики широко применяются в сумматорах.

gastroguru © 2017