Чем отличается двоичная система от десятичной. Двоично-десятичная система

Двоично-десятичная система счисления получила большое распространение в современных компьютерах ввиду легкости перевода в десятичную систему и обратно. Она используется там, где основное внимание уделяется не простоте технического построения машины, а удобству работы пользователя. В этой системе счисления все десятичные цифры отдельно кодируются четырьмя двоичными цифрами и в таком виде записываются последовательно друг за другом.

Двоично-десятичная система не экономична с точки зрения реализации технического построения машины (примерно на 20 % увеличивается потребное оборудование), но очень удобна при подготовке задач и при программировании. В двоично-десятичной системе счисления основанием системы счисления является число десять, но каждая из 10 десятичных цифр (0, 1, ..., 9) изображается при помощи двоичных цифр, то есть кодируется двоичными цифрами. Для представления одной десятичной цифры используются четыре двоичных. Здесь имеется, конечно, избыточность, поскольку четыре двоичных цифры (или двоичная тетрада) могут изобразить не 10, а 16 чисел, но это уже издержки производства в угоду удобства программирования. Существует целый ряд двоично-кодированных десятичных систем представления чисел, отличающихся тем, что определенным сочетаниям нулей и единиц внутри одной тетрады поставлены в соответствие те или иные значения десятичных цифр 1 .

В наиболее часто используемой естественной двоично-кодированной десятичной системе счисления веса двоичных разрядов внутри тетрады естественны, то есть 8, 4, 2, 1 (табл. 3.1).

Таблица 3.1. Таблица двоичных кодов десятичных и шестнадцатеричных цифр

Цифра Код Цифра Код
A
B
C
D
E
F

Например, десятичное число 9703 в двоично-десятичной системе выглядит так: 1001011100000011.

18 вопрос. ос. Логические основы работы ЭВМ. Операции алгебры логики

Алгебра логики предусматривает множество логических операций. Однако три из них заслуживают особого внимания, т.к. с их помощью можно описать все остальные, и, следовательно, использовать меньше разнообразных устройств при конструировании схем. Такими операциями являются конъюнкция (И), дизъюнкция (ИЛИ) и отрицание (НЕ). Часто конъюнкцию обозначают & , дизъюнкцию - || , а отрицание - чертой над переменной, обозначающей высказывание.

При конъюнкции истина сложного выражения возникает лишь в случае истинности всех простых выражений, из которых состоит сложное. Во всех остальных случаях сложное выражение будет ложно.

При дизъюнкции истина сложного выражения наступает при истинности хотя бы одного входящего в него простого выражения или двух сразу. Бывает, что сложное выражение состоит более, чем из двух простых. В этом случае достаточно, чтобы одно простое было истинным и тогда все высказывание будет истинным.

Отрицание – это унарная операция, т.к выполняется по отношению к одному простому выражению или по отношению к результату сложного. В результате отрицания получается новое высказывание, противоположное исходному.

19 вопрос. Основные правила алгебры логики

Обычная запись этих законов в формальной логике:

20 вопрос. Таблица истинности

Таблицы истинности

Логические операции удобно описывать так называемыми таблицами истинности , в которых отражают результаты вычислений сложных высказываний при различных значениях исходных простых высказываний. Простые высказывания обозначаются переменными (например, A и B).

21 Вопрос. Логические элементы. Их названия и обозначения на схема

Как же использовать полученные нами знания из области математической логики для конструирования электронных устройств? Нам известно, что О и 1 в логике не просто цифры, а обозначение состояний какого-то предмета нашего мира, условно называемых "ложь" и "истина". Таким предметом, имеющим два фиксированных состояния, может быть электрический ток. Устройства, фиксирующие два устойчивых состояния, называются бистабильными (например, выключатель, реле). Если вы помните, первые вычислительные машины были релейными. Позднее были созданы новые устройства управления электричеством - электронные схемы , состоящие из набора полупроводниковых элементов. Такие электронные схемы, которые преобразовывают сигналы только двух фиксированных напряжений электрического тока (бистабильные) , стали называть логическими элементами.

Логический элемент компьютера - это часть электронной логичеcкой схемы, которая реализует элементарную логическую функцию.

Логическими элементами компьютеров являются электронные схемы И, ИЛИ, НЕ, И-НЕ, ИЛИ-НЕ и другие (называемые также вентилями ), а также триггер.

С помощью этих схем можно реализовать любую логическую функцию, описывающую работу устройств компьютера. Обычно у вентилей бывает от двух до восьми входов и один или два выхода.

Чтобы представить два логических состояния - “1” и “0” в вентилях, соответствующие им входные и выходные сигналы имеют один из двух установленных уровней напряжения. Например, +5 вольт и 0 вольт.

Высокий уровень обычно соответствует значению “истина” (“1”), а низкий - значению “ложь” (“0”).

Каждый логический элемент имеет свое условное обозначение, которое выражает его логическую функцию, но не указывает на то, какая именно электронная схема в нем реализована. Это упрощает запись и понимание сложных логических схем.

Работу логических элементов описывают с помощью таблиц истинности.

Таблица истинности это табличное представление логической схемы (операции), в котором перечислены все возможные сочетания значений истинности входных сигналов (операндов) вместе со значением истинности выходного сигнала (результата операции) для каждого из этих сочетаний.

Сложение положительных чисел Сложение многоразрядных чисел осуществляется по правилам двоичной арифметики; особенность проявляется при сложении двух единиц. При S = Ю(10)сумма двух единиц равна двум, что эквивалентно 10(2). Таким образом, вместо одного разряда образуется два. В этом...
(Вычислительная техника)
  • Арифметические действия над числами с плавающей запятой
    Сложение чисел При сложении чисел с плавающей запятой результат определяется как сумма мантисс слагаемых с общим для слагаемых порядком. Если знаки обеих мантисс одинаковы, то они складываются в прямых кодах, если разные - в дополнительном или обратном кодах. В табл. 2.8 приведен порядок действий...
    (Вычислительная техника)
  • Числа в десятичной системе счисления
    10° - единица 109 - миллиард 1024 - септиллион 101 - десять 1012 - триллион 1027 - октиллион 102 - сто 1015 - квадриллион Ю30 - нониллион 103 - тысяча 1018 - квинтиллион 1033 - дециллион 106 - миллион 1021 - ...
    (Физика)
  • Системы счисления
    Человеку издревле приходилось считать различные предметы и записывать их количество. Для этих целей возникла унарная система записи, при которой числа обозначались соответствующим количеством черточек (или засечек). Например, число 5 представлялось как 111 |. Унарная запись очень громоздкая и...
    (Архитектура ЭВМ)
  • Экономичность системы счисления
    Число в системе счисления рек разрядами, очевидно, будет иметь наибольшее значение в том случае, если все цифры числа окажутся максимальными, т. е. равными - 1). Тогда (гр)тах =(/>-1)...(/>-!) = / -1. к цифр Количество разрядов числа при переходе от одной системы счисления...
    (Архитектура ЭВМ)
  • Корректура счисления пути по одной линии положения
    При подходе к побережью обстановка может сложиться так, что судоводитель имеет возможность получить только одну линию положения. Например, открылась вершина горы, на которую можно измерить только пеленг, или прослушиваются сигналы только одного радиомаяка. Такая же обстановка складывается и при определении...
    (Анализ и обработка навигационных измерений)
  • Понятие смешанной системы счисления

    Среди систем счисления выделяют класс так называемых смешанных систем счисления .

    Определение 1

    Смешанной называется такая система счисления , в которой числа, заданные в некоторой системе счисления с основанием $P$ изображаются с помощью цифр другой системы счисления с основанием $Q$, где $Q

    При этом в такой системе счисления во избежание разночтения для изображения каждой цифры системы с основанием $P$ отводится одинаковое количество разрядов системы с основанием $Q$, достаточное для представления любой цифры системы с основанием $P$.

    Примером смешанной системы счисления является двоично-десятичная система.

    Практическое обоснование использования двоично-десятичной системы счисления

    Поскольку человек в своей практике широко использует десятичную систему счисления, а для компьютера свойственно оперирование двоичными числами и двоичной арифметикой, был введен в практику компромиссный вариант - система двоично-десятичной записи чисел , которая, как правило, используется там, где присутствует необходимость частого использования процедуры десятичного ввода-вывода (например, электронные часы, калькуляторы и т.д.). В подобных устройствах не всегда целесообразно применять универсальный микрокод перевода двоичных чисел в десятичные и обратно по причине малого объема программной памяти.

    Замечание 1

    В некоторых типах ЭВМ в арифметико-логических устройствах (АЛУ) имеются специальные блоки десятичной арифметики, которые выполняют операции над числами, представленными в двоично-десятичном коде. Это позволяет в некоторых случаях существенно повысить производительность ЭВМ.

    К примеру, в автоматизированной системе обработки данных используется большое количество чисел, а вычислений при этом немного. В подобном случае операции перевода чисел из одной системы в другую существенно превысили бы время выполнения операций по обработке информации. Микропроцессоры же используют чистые двоичные числа, однако при этом понимают и команды преобразования в двоично-десятичную запись. АЛУ AVR-микроконтроллера (как и других микропроцессоров) выполняет элементарные арифметические и логические операции над числами, представленными в двоичном коде, а именно:

      считывает результаты преобразования АЦП;

      в формате целых чисел или чисел с плавающей точкой выполняет обработку результатов измерения.

    Однако окончательный результат при этом выводится на индикатор в десятичном формате, удобном для восприятия человеком.

    Принципы построения двоично-десятичной системы счисления

    При построении двоично-десятичной системы счисления для изображения каждой десятичной цифры в ней отводится $4$ двоичных разряда, поскольку максимальная десятичная цифра $9$ кодируется как $10012$.

    Например: $925_{10} = 1001 0010 0101_{2-10}$.

    Рисунок 1.

    В данной записи последовательные четверки двоичных разрядов изображают цифры $9$, $2$ и $5$ десятичной записи соответственно.

    Для записи числа в двоично-десятичной системе счисления его необходимо сначала представить в десятичной системе, а затем каждую, входящую в состав числа, десятичную цифру представить в двоичной системе. При этом для написания различных десятичных цифр в двоичной системе счисления требуется разное количество двоичных разрядов. Чтобы обойтись без применения каких-либо разделительных знаков, при двоичном изображении десятичной цифры всегда записывается 4 двоичных разряда. Группа из этих четырех разрядов называется тетрадой .

    Хотя в двоично-десятичной записи используются только цифры $0$ и $1$, она отличается от двоичного изображения данного числа, так как десятичный эквивалент двоичного числа в несколько раз больше десятичного эквивалента двоично-десятичного числа.

    Например:

    $1001 0010 0101_{(2)} = 2341_{(10)}$,

    $1001 0010 0101_{(2)} = 925_{(2-10)}$.

    Такая запись довольно часто используется как промежуточный этап при переводе числа из десятичной системы в двоичную и обратно. Так как число $10$ не является точной степенью числа $2$, то используются не все $16$ тетрад (тетрады, изображающие числа от $A$ до $F$ отбрасываются, так как эти числа считаются запрещенными), алгоритмы же арифметических операций над многозначными числами в этом случае более сложные, чем в основных системах счисления. И, тем не менее, двоично-десятичная система счисления используется даже на этом уровне во многих микрокалькуляторах и некоторых компьютерах.

    Чтобы откорректировать результаты арифметических операций над числами, представленными в двоично-десятичном коде, в микропроцессорной технике используются команды, которые преобразуют результаты операций в двоично-десятичную систему счисления. При этом используется следующее правило: при получении в результате операции (сложения или вычитания) в тетраде числа, большего, чем $9$, к этой тетраде прибавляют число $6$.

    Например: $75+18=93$.

    $10001101 \ (8D)$

    В младшей тетраде появилась запрещенная цифра $D$. Прибавим к младшей тетраде $6$ и получим:

    $10010011 \ (93)$

    Как видим, несмотря на то, что сложение осуществлялось в двоичной системе счисления результат операции получился в двоично-десятичной.

    Замечание 2

    Поразрядное уравновешивание часто осуществляют на основе двоично-десятичной системы счисления . Применение двоичной и двоично-десятичной системы счисления наиболее целесообразно, поскольку в этом случае число тактов уравновешивания оказывается наименьшим среди прочих систем счисления. Заметим, что применение двоичного кода позволяет примерно на $20\%$ уменьшить время обработки компенсирующего напряжения по сравнению с двоично-десятичным.

    Преимущества использования двоично-десятичной системы счисления

    Преобразование чисел из десятичной системы в двоично-десятичную систему счисления не связано с вычислениями и его легко реализовать, используя при этом простейшие электронные схемы, так как преобразовывается небольшое количество (4) двоичных цифр. Обратное же преобразование происходит в ЭВМ автоматически с помощью особой программы перевода.

    Применение двоично-десятичной системы счисления совместно с одной из основных систем счисления (двоичной) позволяет разрабатывать и создавать высокопроизводительные ЭВМ, так как использование блока десятичной арифметики в АЛУ исключает при решении задач необходимость программированного перевода чисел из одной системы счисления в другую.

    Поскольку две двоично-десятичные цифры составляют $1$ байт, с помощью которого можно представить значения чисел от $0$ до $99$, а не от $0$ до $255$, как при использовании $8$-разрядного двоичного числа, то используя $1$ байт для преставления каждых двух десятичных цифр, можно формировать двоично-десятичные числа с любым требуемым числом десятичных разрядов.

    В курсе информатики, вне зависимости, школьном или университетском, особое место уделяется такому понятию как системы счисления. Как правило, на него выделяют несколько уроков или практических занятий. Основная цель - не только усвоить основные понятия темы, изучить виды систем счисления, но и познакомиться с двоичной, восьмеричной и шестнадцатеричной арифметикой.

    Что это значит?

    Начнем с определения основного понятия. Как отмечает учебник "Информатика", система счисления - записи чисел, в которой используется специальный алфавит или определенный набор цифр.

    В зависимости от того, меняется ли значение цифры от ее положения в числе, выделяют две: позиционную и непозиционную системы счисления.

    В позиционных системах значение цифры меняется вместе с ее положением в числе. Так, если взять число 234, то цифра 4 в ней означает единицы, если же рассмотреть число 243, то тут она будет уже означать десятки, а не единицы.

    В непозиционных системах значение цифры статично, вне зависимости от ее положения в числе. Наиболее яркий пример - палочковая система, где каждая единица обозначается с помощью черточки. Неважно, куда вы припишите палочку, значение числа измениться лишь на единицу.

    Непозиционные системы

    К непозиционным системам счисления относятся:

    1. Единичная система, которая считается одной из первых. В ней вместо цифр использовались палочки. Чем их было больше, тем больше было значение числа. Встретить пример чисел, записанных таким образом, можно в фильмах, где речь идет о потерянных в море людях, заключенных, которые отмечают каждый день с помощью зарубок на камне или дереве.
    2. Римская, в которой вместо цифр использовались латинские буквы. Используя их, можно записать любое число. При этом его значение определялось с помощью суммы и разницы цифр, из которых состояло число. Если слева от цифры находилось меньшее число, то левая цифра вычиталась из правой, а если справа цифра была меньше или равна цифре слева, то их значения суммировались. Например, число 11 записывалось как XI, а 9 - IX.
    3. Буквенные, в которых числа обозначались с помощью алфавита того или иного языка. Одной из них считается славянская система, в которой ряд букв имел не только фонетическое, но и числовое значение.
    4. в которой использовалось всего два обозначения для записи - клинья и стрелочки.
    5. В Египте тоже использовались специальные символы для обозначения чисел. При записи числа каждый символ мог использоваться не более девяти раз.

    Позиционные системы

    Большое внимание уделяется в информатике позиционным системам счисления. К ним относятся следующие:

    • двоичная;
    • восьмеричная;
    • десятичная;
    • шестнадцатеричная;
    • шестидесятеричная, используемая при счете времени (к примеру, в минуте - 60 секунд, в часе - 60 минут).

    Каждая из них обладает своим алфавитом для записи, правилами перевода и выполнения арифметических операций.

    Десятичная система

    Данная система является для нас наиболее привычной. В ней используются цифры от 0 до 9 для записи чисел. Они также носят название арабских. В зависимости от положения цифры в числе, она может обозначать разные разряды - единицы, десятки, сотни, тысячи или миллионы. Ее мы пользуемся повсеместно, знаем основные правила, по которым производятся арифметические операции над числами.

    Двоичная система

    Одна из основных систем счисления в информатике - двоичная. Ее простота позволяет компьютеру производить громоздкие вычисления в несколько раз быстрее, нежели в десятичной системе.

    Для записи чисел используется лишь две цифры - 0 и 1. При этом, в зависимости от положения 0 или 1 в числе, его значение будет меняться.

    Изначально именно с помощью компьютеры получали всю необходимую информацию. При этом, единица означала наличие сигнала, передаваемого с помощью напряжения, а ноль - его отсутствие.

    Восьмеричная система

    Еще одна известная компьютерная система счисления, в которой применяются цифры от 0 до 7. Применялась в основном в тех областях знаний, которые связаны с цифровыми устройствами. Но в последнее время она употребляется значительно реже, так как на смену ей пришла шестнадцатеричная система счисления.

    Двоично-десятичная система

    Представление больших чисел в двоичной системе для человека - процесс довольно сложный. Для его упрощения была разработана Используется она обычно в электронных часах, калькуляторах. В данной системе из десятичной системы в двоичную преобразуется не все число, а каждая цифра переводится в соответствующий ей набор нулей и единиц в двоичной системе. Аналогично происходит и перевод из двоичной системы в десятичную. Каждая цифра, представленная в виде четырехзначного набора нулей и единиц, переводится в цифру десятичной системы счисления. В принципе, нет ничего сложного.

    Для работы с числам в данном случае пригодится таблица систем счисления, в которой будет указано соответствие между цифрами и их двоичным кодом.

    Шестнадцатеричная система

    В последнее время все большую популярность приобретает в программировании и информатике система счисления шестнадцатеричная. В ней используются не только цифры от 0 до 9, но и ряд латинских букв - A, B, C, D, E, F.

    При этом, каждая из букв имеет свое значение, так A=10, B=11, C=12 и так далее. Каждое число представляется в виде набора из четырех знаков: 001F.

    Перевод чисел: из десятичной в двоичную

    Перевод в системах счисления чисел происходит по определенным правилам. Наиболее часто встречается перевод из двоичной в десятичную систему и наоборот.

    Для того, чтобы перевести число из десятичной системы в двоичную, необходимо последовательно делить его на основание системы счисления, то есть, число два. При этом, остаток от каждого деления необходимо фиксировать. Так будет происходить до тех пор, пока остаток от деления не будет меньше или равен единице. Проводить вычисления лучше всего в столбик. Затем полученные остатки от деления записываются в строку в обратном порядке.

    Например, переведем число 9 в двоичную систему:

    Делим 9, так как число не делится нацело, то берем число 8, остаток будет 9 - 1 = 1.

    После деления 8 на 2 получаем 4. Снова делим его, так как число делится нацело - получаем в остатке 4 - 4 = 0.

    Проводим ту же операцию с 2. В остатке получаем 0.

    В итоге деления у нас получается 1.

    Вне зависимости от итоговой системы счисления, перевод чисел из десятичной в любую другую будет происходить по принципу деления числа на основу позиционной системы.

    Перевод чисел: из двоичной в десятичную

    Довольно легко переводить числа и в десятичную систему счисления из двоичной. Для этого достаточно знать правила возведения чисел в степень. В данном случае, в степень двойки.

    Алгоритм перевода следующий: каждую цифру из кода двоичного числа необходимо умножить на двойку, причем, первая двойка будет в степени m-1, вторая - m-2 и так далее, где m - количество цифр в коде. Затем сложить результаты сложения, получив целое число.

    Для школьников этот алгоритм можно объяснить проще:

    Для начала берем и записываем каждую цифру, умноженную на двойку, затем проставляем степень двойки с конца, начиная с нуля. Потом складываем полученное число.

    Для примера разберем с вами полученное ранее число 1001, переведя его в десятичную систему, и заодно проверим правильность наших вычислений.

    Выглядеть это будет следующим образом:

    1*2 3 + 0*2 2 +0*2 1 +1*2 0 = 8+0+0+1 =9.

    При изучении данной темы удобно использовать таблицу со степенями двойки. Это существенно уменьшит количество времени, необходимое для проведения вычислений.

    Другие варианты перевода

    В некоторых случаях перевод может осуществляться между двоичной и восьмеричной системой счисления, двоичной и шестнадцатеричной. В таком случае можно пользоваться специальными таблицами или же запустить на компьютере приложение калькулятор, выбрав во вкладке вид вариант «Программист».

    Арифметические операции

    Вне зависимости от того, в каком виде представлено число, с ним можно проводить привычные для нас вычисления. Это может быть деление и умножение, вычитание и сложение в системе счисления, которую вы выбрали. Конечно, для каждой из них действуют свои правила.

    Так для двоичной системы разработаны свои таблицы для каждой из операций. Такие же таблицы используются и в других позиционных системах.

    Заучивать их необязательно - достаточно просто распечатать и иметь под рукой. Также можно воспользоваться калькулятором на ПК.

    Одна из важнейших тем в информатике - система счисления. Знание этой темы, понимание алгоритмов перевода чисел из одной системы в другую - залог того, что вы сможете разобраться в более сложных темах, таких как алгоритмизация и программирование и сможете самостоятельно написать свою первую программу.


    Двоично-десятичная система счисления получила большое распространение в современных компьютерах из-за легкости перевода в десятичную систему и обратно. Она используется там, где основное внимание уделяется не простоте технического построения машины, а удобству работы пользователя. В этой системе счисления все десятичные цифры отдельно кодируются четырьмя двоичными цифрами и в таком виде записываются последовательно друг за другом.

    Двоично-десятичная система не экономична с точки зрения реализации технического построения машины (примерно на 20 % увеличивается требуемое оборудование), но очень удобна при подготовке задач и при программировании. В двоично-десятичной системе счисления основанием системы счисления является число 10, но каждая десятичная цифра (0, 1, ..., 9) изображается, то есть кодируется, двоичными цифрами. Для представления одной десятичной цифры используются четыре двоичных. Здесь, конечно, имеется избыточность, поскольку 4 двоичных цифры (или двоичная тетрада) могут изобразить не 10, а 16 чисел, но это уже издержки производства в угоду удобству программирования. Существует целый ряд двоично-кодированных десятичных систем представления чисел, отличающихся тем, что определенным сочетаниям нулей и единиц внутри одной тетрады поставлены в соответствие те или иные значения десятичных цифр. В наиболее часто используемой естественной двоично-кодированной десятичной системе счисления веса двоичных разрядов внутри тетрады естественны, то есть 8, 4, 2, 1 (табл. 6).

    Таблица 6

    Двоично-десятичная счисления

    Например, десятичное число 5673 в двоично-десятичном представлении имеет вид 01010110011100011.

    Перевод чисел из одной системы счисления в другую составляет важную часть машинной арифметики. Рассмотрим основные правила перевода.

    1. Для перевода двоичного числа в десятичное необходимо его записать в виде многочлена, состоящего из произведений цифр числа и соответствующей степени числа 2, и вычислить по правилам десятичной арифметики:

    При переводе удобно пользоваться таблицей степеней двойки:

    Таблица 7.

    Степени числа 2

    n (степень)

    Пример. Число перевести в десятичную систему счисления.

    2. Для перевода восьмеричного числа в десятичное необходимо его записать в виде многочлена, состоящего из произведений цифр числа и соответствующей степени числа 8, и вычислить по правилам десятичной арифметики:

    При переводе удобно пользоваться таблицей степеней восьмерки:

    Таблица 8.

    Степени числа 8

    n (степень)
    8 n

    Пример. Число 75013 8 перевести в десятичную систему счисления.

    gastroguru © 2017